Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation.
نویسندگان
چکیده
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
منابع مشابه
Ginkgolide K attenuates neuronal injury after ischemic stroke by inhibiting mitochondrial fission and GSK-3β-dependent increases in mitochondrial membrane permeability
Ginkgolide K (GK) belongs to the ginkgolide family of natural compounds found in Ginkgo biloba leaves, which have been used for centuries to treat cerebrovascular and cardiovascular diseases. We evaluated the protective effects of GK against neuronal apoptosis by assessing its ability to sustain mitochondrial integrity and function. Co-immunoprecipitation showed that Drp1 binding to GSK-3β was ...
متن کاملPlant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.
The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxyge...
متن کاملROS‐Mediated PARP Activity Undermines Mitochondrial Function After Permeability Transition Pore Opening During Myocardial Ischemia–Reperfusion
BACKGROUND Ischemia-reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP-ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood-perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP...
متن کاملAnoxia-mediated calcium release through the mitochondrial permeability transition pore silences NMDA receptor currents in turtle neurons.
Mammalian neurons are anoxia sensitive and rapidly undergo excitotoxic cell death when deprived of oxygen, mediated largely by Ca(2+) entry through over-activation of N-methyl-d-aspartate receptors (NMDARs). This does not occur in neurons of the anoxia-tolerant western painted turtle, where a decrease in NMDAR currents is observed with anoxia. This decrease is dependent on a modest rise in cyto...
متن کاملMitochondria in energy-limited states: mechanisms that blunt the signaling of cell death.
Cellular conditions experienced during energy-limited states--elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential--are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These pro-apototi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioenergetics and biomembranes
دوره 47 1-2 شماره
صفحات -
تاریخ انتشار 2015